Effective electrode length enhances electrical activation of nanowire networks: experiment and simulation.
نویسندگان
چکیده
Networks comprised of randomly oriented overlapping nanowires offer the possibility of simple fabrication on a variety of substrates, in contrast with the precise placement required for devices with single or aligned nanowires. Metal nanowires typically have a coating of surfactant or oxide that prevents aggregation, but also prevents electrical connection. Prohibitively high voltages can be required to electrically activate nanowire networks, and even after activation many nanowire junctions remain nonconducting. Nonelectrical activation methods can enhance conductivity but destroy the memristive behavior of the junctions that comprise the network. We show through both simulation and experiment that electrical stimulation, microstructured electrode geometry, and feature scaling can all be used to manipulate the connectivity and thus electrical conductivity of networks of silver nanowires with a nonconducting polymer coating. More generally, these results describe a strategy to integrate nanomaterials into controllable, adaptive macroscale materials.
منابع مشابه
Highly Flexible and Transparent Ag Nanowire Electrode Encapsulated with Ultra-Thin Al2O3: Thermal, Ambient, and Mechanical Stabilities
There is an increasing demand in the flexible electronics industry for highly robust flexible/transparent conductors that can withstand high temperatures and corrosive environments. In this work, outstanding thermal and ambient stability is demonstrated for a highly transparent Ag nanowire electrode with a low electrical resistivity, by encapsulating it with an ultra-thin Al2O3 film (around 5.3...
متن کاملStudy the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy
Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...
متن کاملSimulation and Modeling of a High Sensitivity Micro-electro-mechanical Systems Capacitive Pressure Sensor with Small Size and Clamped Square Diaphragm
This paper proposes a Micro-electro-mechanical (MEMS) capacitive pressure sensor that relies on the movable electrode displaced like a flat plate equal to the maximum center deflection of diaphragm. The diaphragm, movable electrode and mechanical coupling are made of polysilicon, gold and Si3N4, respectively. The fixed electrode is gold and the substrate is Pyrex glass. This proposed method inc...
متن کاملHighly Robust Silver Nanowire Network for Transparent Electrode.
Solution-processed silver nanowire networks are one of the promising candidates to replace a traditional indium tin oxide as next-generation transparent and flexible electrodes due to their ease of processing, moderate flexibility, high transparency, and low sheet resistance. To date, however, high stability of the nanowire networks remains a major challenge because the long-term usages of thes...
متن کاملEffective passivation of Ag nanowire-based flexible transparent conducting electrode by TiO2 nanoshell
Silver nanowire-based flexible transparent electrodes have critical problem, in spite of their excellent electrical and optical properties, that the electrical conductance and transparency degrade within several days in air because of oxidation of silver. To prevent the degradation of the silver nanowire, we encapsulated Ag-NWs with thin TiO2 barrier. Bar-coated silver nanowires on flexible pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 8 9 شماره
صفحات -
تاریخ انتشار 2014